Drive Linear Motion in Industrial Robots with Lead Screws

Christopher Nook by Christopher Nook

While industrial robots have been used to manipulate parts, tools, material, and specialized devices for half a century, industrial robot manufacturers face a range of new challenges associated with increased demand for greater levels of adaptability, agility, and flexibility


While industrial robots have been used to manipulate parts, tools, material, and specialized devices for half a century, industrial robot manufacturers face a range of new challenges associated with increased demand for greater levels of adaptability, agility, and flexibility—challenges that require enhanced linear motion control, which can be met by a new generation of precision-engineered lead screws.

An industrial robot is a multi-functional mechanical device that can be programmed to carry out variable motions to manipulate objects and perform specific tasks. Industrial robots are used in a variety of industries, often to grasp, move, and position work pieces for manufacture or assembly. Increasingly, manufacturing companies seek robotic systems that can manipulate objects, pieces, or tools with programmable movements in several degrees of freedom.

Resolving Industrial Robotic Challenges

One challenge facing industrial robot manufacturers is to find ways to position and control robotic movement despite limitations in acceleration and deceleration.  Robotic guidance systems typically must combine accuracy, rigidity, and speed.  In many applications, achieving high levels of accuracy in stroke movement and rotation on the Z-axis is critical, particularly when high speed and low rubout are required.  Another limiting factor is weight, especially in applications in which inertia has to be minimized.

A new generation of precision-engineered lead screw is enabling industrial robot manufacturers to resolve these challenges. Typically, these screws are used to drive changes in the vertical and horizontal orientation of robot arms.  This type of screw is used to transform the rotary output from an electric motor into the linear motion needed to drive the joint of the arm.  Some screw manufacturers offer optimized thread forms, which when combined with nuts made of specialized materials, can significantly improve performance.

Lead screws offer advantages when compared to other linear motion control mechanisms.  These include:

  • They cost less
  • They are self-locking and do not require a braking system
  • They are better for vertical applications

The Helix Advantage

Precision engineered screws provide important advantages for industrial robotic applications.  Helix is at the forefront of producing a new generation of precision lead screw that dramatically increases accuracy.  Using advanced thread-rolling processes and materials composition technologies, precision-engineered lead and acme screws provide a cost-effective solution for overcoming the linear motion challenges related to industrial robotic systems.

Utilizing the helix angle of the screw thread to convert rotary motion into linear motion and relying on the coefficient of friction between the nut and screw— these screws are a reliable mechanism to position loads.  Screws are available in a variety of materials, such as carbon steel and stainless steel, and can be paired with an internally lubricated plastic or a bearing-grade bronze nut.

Helix precision screw assemblies are compact and incorporate the wear-compensating, anti-backlash design necessary for achieving the precision placement required by industrial robots.  The Helix anti-backlash nut design provides excellent lubrication characteristics with the dimensional stability of the firm’s proprietary engineered acetal material.  These lead nuts also have the added convenience of an integral flange.

Solve Industrial Robot Linear Motion challenges with Lead Screws

Precision-engineered screws can help you resolve your industrial robot challenges.  Helix supplies a complete line of precision leadn and acme screws and assemblies with thread forms that can be optimized to provide the best possible repeatable performance.  With Helix precision screws you will realize greater adaptability, increased agility, and improved flexibility to help meet the increasing demands of industrial robotic systems.

To learn more about how Helix lead screws can help you improve flexibility and performance, download a copy of the our case study: Lead Screws Drive Missile Fin Actuation Systems: